Multiple Integration 

The regions shown in the figure below are called region of type I and region of type II. 

 

Image 

 

Type I region
R:  `and`(`<=`(a, x), `<=`(x, b)), `and`(`<=`(u[1](x), y), `<=`(y, u[2](x))) 

Type II region
R:  `and`(`<=`(c, y), `<=`(y, d)), `and`(`<=`(v[1](x), x), `<=`(x, v[2](x))) 

If f is continuous on a region of Type I (vertically simple), we define an iterated integral of fover the region by 

Int(f(x, y), y = u[1](x) .. u[2](x)) dx 

 

We first integrate Int(f(x, y), y = u[1](x) .. u[2](x))treating x in the integrand as a constant. The result of this integration is a function of say Next, integrate `*`(g(x), `*`(dx)). This final result is the value of the iterated integral. The basic idea is to carry out successive integrations. 

 

In a similar manner, we define an iterated integral of a continuous function f over a region of  Type II (horizontally simple) by 

Int(f(x, y), x = v[1](x) .. v[2](x)) dy =Int(f(x, y), x = v[1](x) .. v[2](x)) dy 

Iterated integrals provide the means for evaluating a double integral dAover a region of Type I or Type II or a region that can be expressed as a union of a finite number of these regions. 

 

Evaluation of Double Integrals 

Let f be continuous on a region  

 

Int(Int(f(x, y), y = u[1](x) .. u[2](x)), x = a .. b) 

 

Int(f(x, y), x = v[1](x) .. v[2](x))dy 

Evaluation of Double Integrals 

 

 

We can also calculate the iterated integral using 

 

As an aid in reducing a double integral to an iterated integral with correct limits of integration, it is useful to visualize the double summation process pictorially. This can be indicated by vertical lines  in region of Types I and horizontally lines in region of Types II.   

In the package calcplot , you will find commands for plotting such 2D regions described in Cartesian coordinates. 

 

 

 

Example 1 

Compute the iterated integrals 

Int(Int(`+`(`*`(3, `*`(`^`(x, 4))), `*`(2, `*`(x, `*`(`^`(y, 2))))), y = -2 .. 1), x = 1 .. 3) ,   Int(Int(`+`(`*`(3, `*`(`^`(x, 4))), `*`(2, `*`(x, `*`(`^`(y, 2))))), x = 1 .. 3), y = -2 .. 1) 

Solution 

a) 

> f:=(x,y)->3*x^4+2*x*y^2;  
 

proc (x, y) options operator, arrow; `+`(`*`(3, `*`(`^`(x, 4))), `*`(2, `*`(x, `*`(`^`(y, 2))))) end proc
 

Region of integration 

> dydxplot(y=-2..1,x=1..3,axes=frame,title="Region of integration",titlefont=[times,bold,16]);  
 

Plot_2d
 

The line segments that pass through the interior of the region illustrate elements of integration.  

> Ayx:=Doubleint(f(x,y),y=-2..1,x=1..3):
Ayx=value(Ayx);
 

Int(Int(`+`(`*`(3, `*`(`^`(x, 4))), `*`(2, `*`(x, `*`(`^`(y, 2))))), y = -2 .. 1), x = 1 .. 3) = `/`(2298, 5)
 

Now we evaluate the integral by reversing the order of integration. 

> dxdyplot(x=1..3,y=-2..1,axes=frame,title="Region of integration",titlefont=[times,bold,16]);  
 

Plot_2d
 

We calculate the integral by first integrating from 1 .. 3 with respect to x and then integrating the result from -2 .. 1 with respect to y. 

> Axy:=Doubleint(f(x,y),x=1..3,y=-2..1):
Axy=value(Axy);
 

Int(Int(`+`(`*`(3, `*`(`^`(x, 4))), `*`(2, `*`(x, `*`(`^`(y, 2))))), x = 1 .. 3), y = -2 .. 1) = `/`(2298, 5)